
筆者最近工作中遇見(jiàn)一個(gè)性能瓶頸問(wèn)題,MySQL表,每天大概新增776萬(wàn)條記錄,存儲(chǔ)周期為7天,超過(guò)7天的數(shù)據(jù)需要在新增記錄前老化。連續(xù)運(yùn)行9天以后,刪除一天的數(shù)據(jù)大概需要3個(gè)半小時(shí)(環(huán)境:128G, 32核,4T硬盤),而這是不能接受的。當(dāng)然如果要整個(gè)表刪除,毋庸置疑用
TRUNCATE TABLE就好。
最初的方案(因?yàn)槲搭A(yù)料到刪除會(huì)如此慢),代碼如下(最簡(jiǎn)單和樸素的方法):
delete from table_name where cnt_date = target_date
后經(jīng)過(guò)研究,最終實(shí)現(xiàn)了飛一般(1秒左右)的速度刪除770多萬(wàn)條數(shù)據(jù),單張表總數(shù)據(jù)量在4600萬(wàn)上下,優(yōu)化過(guò)程的方案層層遞進(jìn),詳細(xì)記錄如下:
- 批量刪除(每次限定一定數(shù)量),然后循環(huán)刪除直到全部數(shù)據(jù)刪除完畢;同時(shí)key_buffer_size 由默認(rèn)的8M提高到512M
運(yùn)行效果:刪除時(shí)間大概從3個(gè)半小時(shí)提高到了3小時(shí)
(1)通過(guò)limit(具體size 請(qǐng)酌情設(shè)置)限制一次刪除的數(shù)據(jù)量,然后判斷數(shù)據(jù)是否刪除完,附源碼如下(Python實(shí)現(xiàn)):
def delete_expired_data(mysqlconn, day):
mysqlcur = mysqlconn.cursor()
delete_sql = "DELETE from table_name where cnt_date='%s' limit 50000" % day
query_sql = "select srcip from table_name where cnt_date = '%s' limit 1" % day
try:
df = pd.read_sql(query_sql, mysqlconn)
while True:
if df is None or df.empty:
break
mysqlcur.execute(delete_sql)
mysqlconn.commit()
df = pd.read_sql(query_sql, mysqlconn)
except:
mysqlconn.rollback()
(2)增加key_buffer_size
mysqlcur.execute("SET GLOBAL key_buffer_size = 536870912")
key_buffer_size是global變量,詳情參見(jiàn)Mysql官方文檔:https://dev.mysql.com/doc/refman/5.7/en/server-configuration.html
- DELETE QUICK + OPTIMIZETABLE
適用場(chǎng)景:MyISAM Tables
Why: MyISAM刪除的數(shù)據(jù)維護(hù)在一個(gè)鏈表中,這些空間和行的位置接下來(lái)會(huì)被Insert的數(shù)據(jù)復(fù)用。 直接的delete后,mysql會(huì)合并索引塊,涉及大量?jī)?nèi)存的拷貝移動(dòng);而OPTIMIZE TABLE直接重建索引,即直接把數(shù)據(jù)塊情況,再重新搞一份(聯(lián)想JVM垃圾回收算法)。
運(yùn)行效果:刪除時(shí)間大3個(gè)半小時(shí)提高到了1小時(shí)40分
具體代碼如下:
def delete_expired_data(mysqlconn, day):
mysqlcur = mysqlconn.cursor()
delete_sql = "DELETE QUICK from table_name where cnt_date='%s' limit 50000" % day
query_sql = "select srcip from table_name where cnt_date = '%s' limit 1" % day
optimize_sql = "OPTIMIZE TABLE g_visit_relation_asset"
try:
df = pd.read_sql(query_sql, mysqlconn)
while True:
if df is None or df.empty:
break
mysqlcur.execute(delete_sql)
mysqlconn.commit()
df = pd.read_sql(query_sql, mysqlconn)
mysqlcur.execute(optimize_sql)
mysqlconn.commit()
except:
mysqlconn.rollback()
- 表分區(qū),直接刪除過(guò)期日期所在的分區(qū)(最終方案—秒殺)
MySQL表分區(qū)有幾種方式,包括RANGE、KEY、LIST、HASH,具體參見(jiàn)官方文檔。因?yàn)檫@里的應(yīng)用場(chǎng)景日期在變化,所以不適合用RANGE設(shè)置固定的分區(qū)名稱,HASH分區(qū)更符合此處場(chǎng)景
(1)分區(qū)表定義,SQL語(yǔ)句如下:
ALTER TABLE table_name PARTITION BY HASH(TO_DAYS(cnt_date)) PARTITIONS 7;
TO_DAYS將日期(必須為日期類型,否則會(huì)報(bào)錯(cuò):Constant, random or timezone-dependent expressions in (sub)partitioning function are not allowed)轉(zhuǎn)換為天數(shù)(年月日總共的天數(shù)),然后HASH;建立7個(gè)分區(qū)。實(shí)際上,就是 days MOD 7。
(2)查詢出需要老化的日期所在的分區(qū),SQL語(yǔ)句如下:
"explain partitions select * from g_visit_relation_asset where cnt_date = '%s'" % expired_day
執(zhí)行結(jié)果如下(partitions列即為所在分區(qū)):
+----+-------------+------------------+------------+------+----------------+------+---------+------+---------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------------+------------+------+----------------+------+---------+------+---------+----------+-------------+
| 1 | SIMPLE | table_name | p1 | ALL | cnt_date_index | NULL | NULL | NULL | 1325238 | 100.00 | Using where |
+----+-------------+------------------+------------+------+----------------+------+---------+------+---------+----------+-------------+
1 row in set, 2 warnings (0.00 sec)
(3)OPTIMIZE or REBUILD partition,SQL語(yǔ)句如下:
"ALTER TABLE g_visit_relation_asset OPTIMIZE PARTITION '%s'" % partition
完整代碼如下【Python實(shí)現(xiàn)】,循環(huán)刪除小于指定日期的數(shù)據(jù):
def clear_partition_data(mysqlconn, day):
mysqlcur = mysqlconn.cursor()
expired_day = day
query_partition_sql = "explain partitions select * from table_name where cnt_date = '%s'" % expired_day
# OPTIMIZE or REBUILD after truncate partition
try:
while True:
df = pd.read_sql(query_partition_sql, mysqlconn)
if df is None or df.empty:
break
partition = df.loc[0, 'partitions']
if partition is not None:
clear_partition_sql = "alter table table_name TRUNCATE PARTITION %s" % partition
mysqlcur.execute(clear_partition_sql)
mysqlconn.commit()
optimize_partition_sql = "ALTER TABLE table_name OPTIMIZE PARTITION %s" % partition
mysqlcur.execute(optimize_partition_sql)
mysqlconn.commit()
expired_day = (expired_day - timedelta(days = 1)).strftime("%Y-%m-%d")
df = pd.read_sql(query_partition_sql, mysqlconn)
except:
mysqlconn.rollback()
如果刪除的數(shù)據(jù)超過(guò)表數(shù)據(jù)的百分之50,建議拷貝所需數(shù)據(jù)到臨時(shí)表,然后刪除原表,再重命名臨時(shí)表為原表,附MySQL如下:
INSERT INTO New
SELECT * FROM Main
WHERE ...; -- just the rows you want to keep
RENAME TABLE main TO Old, New TO Main;
DROP TABLE Old; -- Space freed up here
可通過(guò): ALTER TABLE table_name REMOVE PARTITIONING 刪除分區(qū),而不會(huì)刪除相應(yīng)的數(shù)據(jù)
參考:
1)https://dev.mysql.com/doc/refman/5.7/en/alter-table-partition-operations.html具體分區(qū)說(shuō)明
2)http://mysql.rjweb.org/doc.php/deletebig#solutions 刪除大數(shù)據(jù)的解決方案
本文版權(quán)歸作者和博客園共有,歡迎轉(zhuǎn)載,但未經(jīng)作者同意必須保留此段聲明,且在文章頁(yè)面明顯位置給出原文連接,否則保留追究法律責(zé)任的權(quán)利。
************************************************************************
精力有限,想法太多,專注做好一件事就行
我只是一個(gè)程序猿。5年內(nèi)把代碼寫好,技術(shù)博客字字推敲,堅(jiān)持零拷貝和原創(chuàng)寫博客的意義在于打磨文筆,訓(xùn)練邏輯條理性,加深對(duì)知識(shí)的系統(tǒng)性理解;如果恰好又對(duì)別人有點(diǎn)幫助,那真是一件令人開心的事
到此這篇關(guān)于MySQL 快速刪除大量數(shù)據(jù)(千萬(wàn)級(jí)別)的幾種實(shí)踐方案詳解的文章就介紹到這了,更多相關(guān)MySQL 快速刪除大量數(shù)據(jù)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- mysql千萬(wàn)級(jí)數(shù)據(jù)量根據(jù)索引優(yōu)化查詢速度的實(shí)現(xiàn)
- MySQL循環(huán)插入千萬(wàn)級(jí)數(shù)據(jù)
- MySQL 千萬(wàn)級(jí)數(shù)據(jù)量如何快速分頁(yè)
- MySQL千萬(wàn)級(jí)大數(shù)據(jù)SQL查詢優(yōu)化知識(shí)點(diǎn)總結(jié)
- MySql 快速插入千萬(wàn)級(jí)大數(shù)據(jù)的方法示例
- MySQL如何快速的創(chuàng)建千萬(wàn)級(jí)測(cè)試數(shù)據(jù)
- 30個(gè)mysql千萬(wàn)級(jí)大數(shù)據(jù)SQL查詢優(yōu)化技巧詳解
- mysql千萬(wàn)級(jí)數(shù)據(jù)分頁(yè)查詢性能優(yōu)化
- 如何優(yōu)化Mysql千萬(wàn)級(jí)快速分頁(yè)
- 詳解MySQL數(shù)據(jù)庫(kù)千萬(wàn)級(jí)數(shù)據(jù)查詢和存儲(chǔ)