交叉表
交叉表(Cross Tabulations)是一種常用的分類匯總表格。使用交叉表查詢,顯示源于表中某個(gè)字段的匯總值,并將它們分組,其中一組列在數(shù)據(jù)表的左側(cè),另一組列在數(shù)據(jù)表的上部。行和列的交叉處可以對(duì)數(shù)據(jù)進(jìn)行多種匯總計(jì)算,如:求和、平均值、記數(shù)、最大值、最小值等。使用交叉表查詢數(shù)據(jù)非常直觀明了,被廣泛應(yīng)用。交叉表查詢也是數(shù)據(jù)庫的一個(gè)特點(diǎn)。
例如:
select 表1.組名,
(select 表1.成員姓名 from 表2 b where 表1.成員1id=表2.成員id) as 成員1id,
(select 表1.成員姓名 from 表2 b where 表1.成員2id=表2.成員id) as 成員2id,
(select 表1.成員姓名 from 表2 b where 表1.成員3id=表2.成員id) as 成員3id
from 表1,表2
--這種就是交叉表查詢
交叉報(bào)表是報(bào)表當(dāng)中常見的類型,屬于基本的報(bào)表,是行、列方向都有分組的報(bào)表。這里牽涉到另外一個(gè)概念即分組報(bào)表。這是所有報(bào)表當(dāng)中最普通,最常見的報(bào)表類型,也是所有報(bào)表工具都支持的一種報(bào)表格式。從一般概念上來講,分組報(bào)表就是只有縱向的分組。傳統(tǒng)的分組報(bào)表制作方式是把報(bào)表劃分為條帶狀,用戶根據(jù)一個(gè)數(shù)據(jù)綁定向?qū)е付ǚ纸M,匯總字段,生成標(biāo)準(zhǔn)的分組報(bào)表。
這里我來演示下在POSTGRESQL里面如何實(shí)現(xiàn)交叉表的展示,下面話不多說了,來一起看看詳細(xì)的介紹吧
原始表數(shù)據(jù)如下:
t_girl=# select * from score;
name | subject | score
-------+---------+-------
Lucy | English | 100
Lucy | Physics | 90
Lucy | Math | 85
Lily | English | 95
Lily | Physics | 81
Lily | Math | 84
David | English | 100
David | Physics | 86
David | Math | 89
Simon | English | 90
Simon | Physics | 76
Simon | Math | 79
(12 rows)
Time: 2.066 ms
想要實(shí)現(xiàn)以下的結(jié)果:
name | English | Physics | Math
------+---------+---------+------
Simon | 90 | 76 | 79
Lucy | 100 | 90 | 85
Lily | 95 | 81 | 84
David | 100 | 86 | 89
大致有以下幾種方法:
1、用標(biāo)準(zhǔn)SQL展現(xiàn)出來
t_girl=# select name,
t_girl-# sum(case when subject = 'English' then score else 0 end) as "English",
t_girl-# sum(case when subject = 'Physics' then score else 0 end) as "Physics",
t_girl-# sum(case when subject = 'Math' then score else 0 end) as "Math"
t_girl-# from score
t_girl-# group by name order by name desc;
name | English | Physics | Math
-------+---------+---------+------
Simon | 90 | 76 | 79
Lucy | 100 | 90 | 85
Lily | 95 | 81 | 84
David | 100 | 86 | 89
(4 rows)
Time: 1.123 ms
2、用PostgreSQL 提供的第三方擴(kuò)展 tablefunc 帶來的函數(shù)實(shí)現(xiàn)
以下函數(shù)crosstab 里面的SQL必須有三個(gè)字段,name, 分類以及分類值來作為起始參數(shù),必須以name,分類值作為輸出參數(shù)。
t_girl=# SELECT *
FROM crosstab('select name,subject,score from score order by name desc',$$values ('English'::text),('Physics'::text),('Math'::text)$$)
AS score(name text, English int, Physics int, Math int);
name | english | physics | math
-------+---------+---------+------
Simon | 90 | 76 | 79
Lucy | 100 | 90 | 85
Lily | 95 | 81 | 84
David | 100 | 86 | 89
(4 rows)
Time: 2.059 ms
3、用PostgreSQL 自身的聚合函數(shù)實(shí)現(xiàn)
t_girl=# select name,split_part(split_part(tmp,',',1),':',2) as "English",
t_girl-# split_part(split_part(tmp,',',2),':',2) as "Physics",
t_girl-# split_part(split_part(tmp,',',3),':',2) as "Math"
t_girl-# from
t_girl-# (
t_girl(# select name,string_agg(subject||':'||score,',') as tmp from score group by name order by name desc
t_girl(# ) as T;
name | English | Physics | Math
-------+---------+---------+------
Simon | 90 | 76 | 79
Lucy | 100 | 90 | 85
Lily | 95 | 81 | 84
David | 100 | 86 | 89
(4 rows)
Time: 2.396 ms
4、 存儲(chǔ)函數(shù)實(shí)現(xiàn)
create or replace function func_ytt_crosstab_py ()
returns setof ytt_crosstab
as
$ytt$
for row in plpy.cursor("select name,string_agg(subject||':'||score,',') as tmp from score group by name order by name desc"):
a = row['tmp'].split(',')
yield (row['name'],a[0].split(':')[1],a[1].split(':')[1],a[2].split(':')[1])
$ytt$ language plpythonu;
t_girl=# select name,english,physics,math from func_ytt_crosstab_py();
name | english | physics | math
-------+---------+---------+------
Simon | 90 | 76 | 79
Lucy | 100 | 90 | 85
Lily | 95 | 81 | 84
David | 100 | 86 | 89
(4 rows)
Time: 2.687 ms
5、 用PLPGSQL來實(shí)現(xiàn)
t_girl=# create type ytt_crosstab as (name text, English text, Physics text, Math text);
CREATE TYPE
Time: 22.518 ms
create or replace function func_ytt_crosstab ()
returns setof ytt_crosstab
as
$ytt$
declare v_name text := '';
v_english text := '';
v_physics text := '';
v_math text := '';
v_tmp_result text := '';
declare cs1 cursor for select name,string_agg(subject||':'||score,',') from score group by name order by name desc;
begin
open cs1;
loop
fetch cs1 into v_name,v_tmp_result;
exit when not found;
v_english = split_part(split_part(v_tmp_result,',',1),':',2);
v_physics = split_part(split_part(v_tmp_result,',',2),':',2);
v_math = split_part(split_part(v_tmp_result,',',3),':',2);
return query select v_name,v_english,v_physics,v_math;
end loop;
end;
$ytt$ language plpgsql;
t_girl=# select name,English,Physics,Math from func_ytt_crosstab();
name | english | physics | math
-------+---------+---------+------
Simon | 90 | 76 | 79
Lucy | 100 | 90 | 85
Lily | 95 | 81 | 84
David | 100 | 86 | 89
(4 rows)
Time: 2.127 ms
總結(jié)
以上就是這篇文章的全部?jī)?nèi)容了,希望本文的內(nèi)容對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,如果有疑問大家可以留言交流,謝謝大家對(duì)腳本之家的支持。
您可能感興趣的文章:- PostgreSQL 實(shí)現(xiàn)列轉(zhuǎn)行問題
- PostgreSQL 實(shí)現(xiàn)將多行合并轉(zhuǎn)為列
- postgresql高級(jí)應(yīng)用之行轉(zhuǎn)列&匯總求和的實(shí)現(xiàn)思路