濮阳杆衣贸易有限公司

主頁(yè) > 知識(shí)庫(kù) > 詳解pandas apply 并行處理的幾種方法

詳解pandas apply 并行處理的幾種方法

熱門(mén)標(biāo)簽:深圳網(wǎng)絡(luò)外呼系統(tǒng)代理商 鎮(zhèn)江人工外呼系統(tǒng)供應(yīng)商 柳州正規(guī)電銷(xiāo)機(jī)器人收費(fèi) 千呼ai電話(huà)機(jī)器人免費(fèi) 申請(qǐng)辦個(gè)400電話(huà)號(hào)碼 外呼系統(tǒng)前面有錄音播放嗎 高德地圖標(biāo)注字母 400電話(huà)辦理費(fèi)用收費(fèi) 騰訊地圖標(biāo)注有什么版本

1. pandarallel (pip install )

對(duì)于一個(gè)帶有Pandas DataFrame df的簡(jiǎn)單用例和一個(gè)應(yīng)用func的函數(shù),只需用parallel_apply替換經(jīng)典的apply。

from pandarallel import pandarallel
 
# Initialization
pandarallel.initialize()
 
# Standard pandas apply
df.apply(func)
 
# Parallel apply
df.parallel_apply(func)

注意,如果不想并行化計(jì)算,仍然可以使用經(jīng)典的apply方法。

另外可以通過(guò)在initialize函數(shù)中傳遞progress_bar=True來(lái)顯示每個(gè)工作CPU的一個(gè)進(jìn)度條。

2. joblib (pip install )

 https://pypi.python.org/pypi/joblib

# Embarrassingly parallel helper: to make it easy to write readable parallel code and debug it quickly
 
from math import sqrt
from joblib import Parallel, delayed
 
def test():
  start = time.time()
  result1 = Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10000))
  end = time.time()
  print(end-start)
  result2 = Parallel(n_jobs=8)(delayed(sqrt)(i**2) for i in range(10000))
  end2 = time.time()
  print(end2-end)

-------輸出結(jié)果----------

0.4434356689453125
0.6346755027770996

3. multiprocessing

import multiprocessing as mp
 
with mp.Pool(mp.cpu_count()) as pool:
  df['newcol'] = pool.map(f, df['col'])
multiprocessing.cpu_count()

返回系統(tǒng)的CPU數(shù)量。

該數(shù)量不同于當(dāng)前進(jìn)程可以使用的CPU數(shù)量??捎玫腃PU數(shù)量可以由 len(os.sched_getaffinity(0)) 方法獲得。

可能引發(fā) NotImplementedError 。

參見(jiàn)os.cpu_count()

4. 幾種方法性能比較

(1)代碼

import sys
import time
import pandas as pd
import multiprocessing as mp
from joblib import Parallel, delayed
from pandarallel import pandarallel
from tqdm import tqdm, tqdm_notebook
 
 
def get_url_len(url):
  url_list = url.split(".")
  time.sleep(0.01) # 休眠0.01秒
  return len(url_list)
 
def test1(data):
  """
  不進(jìn)行任何優(yōu)化
  """
  start = time.time()
  data['len'] = data['url'].apply(get_url_len)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("res:{}, cost time:{}".format(res, cost_time))
 
def test_mp(data):
  """
  采用mp優(yōu)化
  """
  start = time.time()
  with mp.Pool(mp.cpu_count()) as pool:
    data['len'] = pool.map(get_url_len, data['url'])
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_mp \t res:{}, cost time:{}".format(res, cost_time))
 
def test_pandarallel(data):
  """
  采用pandarallel優(yōu)化
  """
  start = time.time()
  pandarallel.initialize()
  data['len'] = data['url'].parallel_apply(get_url_len)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_pandarallel \t res:{}, cost time:{}".format(res, cost_time))
 
 
def test_delayed(data):
  """
  采用delayed優(yōu)化
  """
  def key_func(subset):
    subset["len"] = subset["url"].apply(get_url_len)
    return subset
 
  start = time.time()
  data_grouped = data.groupby(data.index)
  # data_grouped 是一個(gè)可迭代的對(duì)象,那么就可以使用 tqdm 來(lái)可視化進(jìn)度條
  results = Parallel(n_jobs=8)(delayed(key_func)(group) for name, group in tqdm(data_grouped))
  data = pd.concat(results)
  end = time.time()
  cost_time = end - start
  res = sum(data['len'])
  print("test_delayed \t res:{}, cost time:{}".format(res, cost_time))
 
 
if __name__ == '__main__':
  
  columns = ['title', 'url', 'pub_old', 'pub_new']
  temp = pd.read_csv("./input.csv", names=columns, nrows=10000)
  data = temp
  """
  for i in range(99):
    data = data.append(temp)
  """
  print(len(data))
  """
  test1(data)
  test_mp(data)
  test_pandarallel(data)
  """
  test_delayed(data)

(2) 結(jié)果輸出

1k
res:4338, cost time:0.0018074512481689453
test_mp   res:4338, cost time:0.2626469135284424
test_pandarallel   res:4338, cost time:0.3467681407928467
 
1w
res:42936, cost time:0.008773326873779297
test_mp   res:42936, cost time:0.26111721992492676
test_pandarallel   res:42936, cost time:0.33237743377685547
 
10w
res:426742, cost time:0.07944369316101074
test_mp   res:426742, cost time:0.294996976852417
test_pandarallel   res:426742, cost time:0.39208269119262695
 
100w
res:4267420, cost time:0.8074917793273926
test_mp   res:4267420, cost time:0.9741342067718506
test_pandarallel   res:4267420, cost time:0.6779992580413818
 
1000w
res:42674200, cost time:8.027287006378174
test_mp   res:42674200, cost time:7.751036882400513
test_pandarallel   res:42674200, cost time:4.404983282089233

在get_url_len函數(shù)里加個(gè)sleep語(yǔ)句(模擬復(fù)雜邏輯),數(shù)據(jù)量為1k,運(yùn)行結(jié)果如下:

1k
res:4338, cost time:10.054503679275513
test_mp   res:4338, cost time:0.35697126388549805
test_pandarallel   res:4338, cost time:0.43415403366088867
test_delayed   res:4338, cost time:2.294757843017578

5. 小結(jié)

(1)如果數(shù)據(jù)量比較少,并行處理比單次執(zhí)行效率更慢;

(2)如果apply的函數(shù)邏輯簡(jiǎn)單,并行處理比單次執(zhí)行效率更慢。

6. 問(wèn)題及解決方法

(1)ImportError: This platform lacks a functioning sem_open implementation, therefore, the required synchronization primitives needed will not function, see issue 3770.

https://www.jianshu.com/p/0be1b4b27bde

(2)Linux查看物理CPU個(gè)數(shù)、核數(shù)、邏輯CPU個(gè)數(shù)

https://lover.blog.csdn.net/article/details/113951192

(3) 進(jìn)度條的使用

https://www.jb51.net/article/206219.htm

到此這篇關(guān)于詳解pandas apply 并行處理的幾種方法的文章就介紹到這了,更多相關(guān)pandas apply 并行處理內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • pandas中apply和transform方法的性能比較及區(qū)別介紹
  • 對(duì)pandas中apply函數(shù)的用法詳解
  • pandas 使用apply同時(shí)處理兩列數(shù)據(jù)的方法
  • pandas apply 函數(shù) 實(shí)現(xiàn)多進(jìn)程的示例講解
  • pandas使用apply多列生成一列數(shù)據(jù)的實(shí)例
  • pandas apply多線(xiàn)程實(shí)現(xiàn)代碼
  • pandas使用函數(shù)批量處理數(shù)據(jù)(map、apply、applymap)
  • pandas提升計(jì)算效率的一些方法匯總

標(biāo)簽:合肥 哈爾濱 大慶 烏蘭察布 烏蘭察布 平頂山 海南 郴州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《詳解pandas apply 并行處理的幾種方法》,本文關(guān)鍵詞  詳解,pandas,apply,并行,處理,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《詳解pandas apply 并行處理的幾種方法》相關(guān)的同類(lèi)信息!
  • 本頁(yè)收集關(guān)于詳解pandas apply 并行處理的幾種方法的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章
    鄱阳县| 绍兴市| 米泉市| 土默特右旗| 宜州市| 丰城市| 金塔县| 平乐县| 罗山县| 新晃| 冕宁县| 东乌珠穆沁旗| 赤城县| 上高县| 荆州市| 海林市| 迭部县| 昭觉县| 甘肃省| 娱乐| 崇义县| 湘乡市| 光泽县| 汉寿县| 额敏县| 汝州市| 青田县| 无极县| 剑河县| 蒙阴县| 容城县| 化州市| 巴彦淖尔市| 西丰县| 连平县| 黎城县| 同德县| 博爱县| 遂川县| 固始县| 尼玛县|